Studies on the Production of Rhamnolipids by Pseudomonas Putida

Download Full Text
Author(s):
Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Published Date:
July 05, 2012
Issue:
Volume 2, Issue 4
Page(s):
19 - 21
DOI:
10.7815/ijorcs.24.2012.035
Views:
4464
Downloads:
778

Keywords:
biosurfactants, rhamnolipids, pseudomonas putida
Citation:
Harikrishna Yadav Nanganuru, Narasimhulu Korrapati, "Studies on the Production of Rhamnolipids by Pseudomonas Putida". International Journal of Research in Computer Science, 2 (4): pp. 19-21, July 2012. doi:10.7815/ijorcs.24.2012.035 Other Formats

Abstract

Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including enhanced oil recovery, biodegradation, and bioremediation. Observation of tensio-active indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas sp. In addition, the ability to generate rhamnolipids by placement of the right microbes might help overcome rhamnolipid adsorption during flow through reservoir rocks and the resultant degradation that would decrease the rhamnolipid concentrations. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates. Maximum value 1.13 mg/ ml was occurred on the second day. Production of biosurfactants depends on the nutrient media. The surface tension was decreased with increasing time and growth.

  1. Costerton JW (1980) Pseudomonas aeruginosa in nature and disease. In: Sabath CD (ed) Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber Publishers, Bern, Switzerland pp 15–24
  2. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a Versatile opportunist. Microbes Infect 2:1051–1060. doi:10.1016/S1286-4579(00)01259-4
  3. Jarvis FG, Johnson MJ (1949) A glycolipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126. doi:10.1021/ja01180a073
  4. Burger MM, Glaser L, Burton RM (1966) Formation of rhamnolipids of Pseudomonas aeruginosa. Methods Enzymol 8: 441–445. doi:10.1016/0076-6879(66)08082-0
  5. Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilisation and biodegradation on n-alkanes. Appl Environ Microbiol 61:2247–2251
  6. Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane In Pseudomonas aeruginosa. J Appl Microbiol 89: 158–168. doi:10.1016/0076-6879(66)08082-0
  7. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32. doi:10.1007/s002530051358
  8. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633
  9. Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of Zoosporic plant pathogens. Plant Dis 81:4–12. doi:10.1094/PDIS.1997.81.1.4
  10. Venkata Ramana K, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45: 249–257. doi:10.1002/jctb.280450402
  11. Déziel É, Paquette G, Villemur R, Lépine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912
  12. Finnerty W. R. (1994), Biosurfacatants in environmental biotechnology. Curr. Opin. Biotechnol. 5, 291D295. doi:10.1016/0958-1669(94)90031-0
  13. Rosenberg E. (1986), Microbial surfacatants. Crit. Rev. Biotechnol. 3, 109D132.
  14. Rouse J. D., Sabatini D. A., Suflita G. M., and Harwell J. H. (1994), Influence of surfactants on microbial de gradation of organic compounds. Crit. Rev. Environ. Sci. Technol. 24, 325D370. doi:10.1080/10643389409388471
  15. Gerson D. F. (1993), The biophysics of microbial surfactants: growth on insoluble substrates. In: Surfactant Science Series, Biosurfactants: Production, Properties, Applications (N. Kozaric ed.). Marcel Dekker, New York, USA, pp. 269D286.
  16. Koch A. K., Reiser J., Kappeli O. and Fiechter A. (1988), Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in bio surfactant production. Bio/Techn. 6, 1335D1339. doi:10.1038/nbt1188-1335
  17. Johnson M. K. and Boese-Marrazzo D. (1980), Pro duction and properties of heat-stable extracellular he molysin from Pseudomonas aeruginosa. Infect. Im mun. 29, 1028D1033.
  18. Itoch S., Honda H., Tomita F. and Suzuki T. (1971), Rhamnolipid produced by Pseudomonas aeruginosa Grown on n-paraffin. J. Antibiot. 24, 855D859.
  19. Siegmund I. and Wagner F. (1991), New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5, 265D268. doi:10.1007/BF02438660
  20. Ochsner A. R. and Reiser J. (1995), Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92, 6424D6428. doi:10.1073/pnas.92.14.6424
  21. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32. doi:10.1007/s002530051358
  22. Linhardt RJ, Bakhit R, Daniels L, Mayerl F (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368. doi:10.1002/bit.260330316
  23. Sim L, Ward OP, Li Z-Y (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238. doi:10.1038/sj.jim.2900450
  24. Robert M et al (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11: 871–874. doi:10.1007/BF01026843

  • Wasoh, Helmi. "Isolation and Screening of High Efficiency Biosurfactant-Producing Pseudomonas sp." JOURNAL OF BIOCHEMISTRY, MICROBIOLOGY AND BIOTECHNOLOGY (e-ISSN 2289-5779) 1.1 (2013): 25-31.