An analysis of the methods employed for breast cancer diagnosis

Download Full Text
Author(s):
Mahjabeen Mirza Beg, Monika Jain
Published Date:
April 30, 2012
Issue:
Volume 2, Issue 3
Page(s):
25 - 29
DOI:
10.7815/ijorcs.23.2012.025
Views:
4788
Downloads:
939

Keywords:
artificial neural network (ann), breast cancer, fuzzy logic
Citation:
Mahjabeen Mirza Beg, Monika Jain, "An analysis of the methods employed for breast cancer diagnosis". International Journal of Research in Computer Science, 2 (3): pp. 25-29, April 2012. doi:10.7815/ijorcs.23.2012.025 Other Formats

Abstract

Breast cancer research over the last decade has been tremendous. The ground breaking innovations and novel methods help in the early detection, in setting the stages of the therapy and in assessing the response of the patient to the treatment. The prediction of the recurrent cancer is also crucial for the survival of the patient. This paper studies various techniques used for the diagnosis of breast cancer. Different methods are explored for their merits and de-merits for the diagnosis of breast lesion. Some of the methods are yet unproven but the studies look very encouraging. It was found that the recent use of the combination of Artificial Neural Networks in most of the instances gives accurate results for the diagnosis of breast cancer and their use can also be extended to other diseases.

  1. Who (2009). “Women’s Health”. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs334/en/index.html
  2. Janghel, R.R.; Shukla, A.; Tiwari, R.; Kala, R. (2010). “Breast Cancer Diagnostic System using Symbiotic Adaptive Neuro-Evolution (SANE)”. Proceedings International conference of Soft Computing and Pattern Recognition 2010 (SoCPaR-2010), 7th-10th Dec., ABV-IIITM, Gwalior. pp: 326-329. doi:10.1109/SOCPAR.2010.5686161
  3. T. A. ETCHELLS, P. J. G. LISBOA., "Orthogonal Search-based Rule Extraction (SRE) for trained Neural Networks: A Practical and Efficient Approach". IEEE Transactions on Neural Networks, Vol.17, 2006, pp: 374-384. doi:10.1109/TNN.2005.863472
  4. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Thun, M.J. Cancer Statistics, 2007. CA Cancer J Clin, Vol. 57, 2007. pp: 43-66. doi:10.3322/canjclin.57.1.43
  5. H.D. CHENG, X. CAI, X. CHEN, L. HU and X. LOU, “Computer-Aided Detection and Classification of Microcalcifications in Mammograms: A Survey”. Elsevierm Pattern Recognition, Vol. 36, No.12, 2003, pp: 2967-2991. doi:10.1016/S0031-3203(03)00192-4
  6. Dehghan, F., Abrishami-Moghaddam, H. (2008). “Comparison of SVM and Neural Network classifiers in Automatic Detection of Clustered Microcalcifications in Digitized Mammograms”. Proceedings 7th International Conference on Machine learning and Cybernetics 2008 (ICMLA-2008), 11th-13th Dec., IEEE, Kunming. pp: 756-761. doi:10.1109/ICMLC.2008.4620505
  7. A. MADABHUSHI, D. METAXAS., (2003). “Combining low-, high-level and Empirical Domain Knowledge for Automated Segmentation of Ultrasonic Breast Lesions”. IEEE Transactions Medical Imaging, Vol. 22, No. 2, 2003, pp: 155–169. doi:10.1109/TMI.2002.808364
  8. RF CHANG, WJ WU, WK MOON, DR CHEN, “Automatic Ultrasound Segmentation and Morphology based Diagnosis of Solid Breast Tumors”. Breast Cancer Research and Treatment; Vol. 89, No. 2, 2005, pp: 179–185. doi:10.1007/s10549-004-2043-z
  9. Karla HORSCH, Maryellen L. GIGER, Luz A. VENTA, Carl J.VYBOMYA., “Automatic Segmentation of Breast Lesions on Ultrasound”, Medical Physic, Vol. 28, No. 8, 2001, pp: 1652–1659. doi:10.1118/1.1386426
  10. B. SAHINER, C. HEANG-PING, N. PATRICK, D. M.A. WEI, D. HELIE, D. ADLER, and M.M. GOODSITT., “Classification of Mass and Normal Breast Tissue: A Convolution Neural Network Classifier with Spatial Domain and Texture Images”. IEEE Transactions on Medical Imaging, Vol. 15, No. 5, 1996, pp: 598- 610. doi:10.1109/42.538937
  11. T. KIYAN, T YILDIRIM. “Breast Cancer Diagnosis using Statistical Neural Networks”, Journal of Electrical & Electronics Engineering, Vol.4-2, 2004, pp: 1149-1153.
  12. Hazlina H., Sameem A.K., NurAishah M.T., Yip C.H. (2004). “Back Propagation Neural Network for the Prognosis of Breast Cancer: Comparison on Different Training Algorithms”. Proceedings Second International Conference on Artificial Intelligence in Engineering & Technology 2004, 3rd-4th Aug., Sabah. pp: 445- 449.
  13. Fadzilah S., Azliza M.A. (2004). “Web-Based Neurofuzzy Classification for Breast Cancer”. Proceedings Second International Conference on Artificial Intelligence in Engineering &Technology 2004, 3rd-4th Aug., Sabah. pp: 383-387.
  14. C.M.CHEN, Y.H.CHOU, K.C.HAN, G.S.HUNG, C.M. TIU, H.J.CHIOU, S.Y.CHIOU., “Breast Lesions on Sonograms: Computer Aided Diagnosis with Nearly Setting-Independent features and Artificial Neural Networks”. Radiology, Vol. 226, 2003, pp: 504-514.
  15. G. SCHWARZER, W. VACH, M. SCHUMACHER., "On the Misuses of Artificial Neural Networks for Prognostic and Diagnostic Classification in Oncology". Statistics in Medicine, Vol. 19, 2005, pp: 541-561.
  16. F. E. AHMED, "Artificial Neural Networks for Diagnosis and Survival Prediction in Colon Cancer," Molecular Cancer, Vol. 4, 2005, pp: 29.
  17. H. B. BURKE, D. B. ROSEN, P. H. GOODMAN., "Comparing Artificial Neural Networks to other Statistical Methods for Medical outcome Prediction". IEEE World Congress, Vol.4, 1994, pp: 2213-2216. doi:10.1109/ICNN.1994.374560
  18. Mojarad, S.A.; Dlay, S.S.; Woo, W.L.; Sherbet, G.V. (2010). ”Breast Cancer prediction and cross validation using multilayer perceptron neural networks”. Proceedings 7th Communication Systems Networks and Digital Signal Processing 2010 (CSNDSP-2010), 21st-23rd July, IEEE, Newcastle Upon Tyne. pp: 760-764.
  19. H. B. BURKE, P. H. GOODMAN, D. B. ROSEN, D. E. HENSON, J. N. WEINSTEIN, F. E. HARRELL, J. J. R. MARKS, D. P. WINCHESTER, D. G. BOSTWICK., "Artificial Neural Networks Improve the Accuracy of Cancer Survival Prediction". Cancer, Vol. 79, 1997, pp: 857-862. doi:10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
  20. Ashraf, M.; Kim, Le.; Xu, Huang. (2010). “Information Gain and Adaptive Neuro-Fuzzy Inference System for Breast Cancer Diagnoses”. Proceedings Computer Sciences Convergence Information Technology 2010 (ICCIT-2010), 30th Nov.-2nd Dec., IEEE, Seoul. pp: 911 – 915. doi:10.1109/ICCIT.2010.5711189
  21. Vazirani, H.; Kala, R.; Shukla, A.; Tiwari, R. (2010). “Diagnosis of Breast Cancer by Modular Neural Network”. Proceedings 3rd IEEE International Conference on Computer Science and Information Technology 2010 (ICCIST-2010), 9th-11th July, IEEE, Chengdu. pp: 115-119. doi:10.1109/ICCSIT.2010.5564054
  22. Mishra, A.K.; Sardar, S. (2010). ”Application Specific Instrumentation and its Feasibility for UWB Sensor Based Breast Cancer Diagnosis”. Proceedings International Conference on Power Control and Embedded Systems 2010 (IPCES-2010), IEEE, Allahabad. pp: 1-4. doi:10.1109/ICPCES.2010.5698671
  23. Jamarani, S.M.H.; Rezai-rad, G.; Behnam, H. (2005). “A Novel Method for Breast Cancer Prognosis using Wavelet Packet based Neural Network”. Proceedings Eengineering in Medicine and Biology Society 2005 (EMBC-2005), 1st-4th Sept., IEEE-EMBs, Shanghai. pp: 3414 - 3417.
  24. Gorunescu, F.; Gorunescu, M.; El-Darzi, E.; Gorunescu, S. (2008). “A Statistical Evaluation of Neural Computing Approaches to Predict Recurrent events in Breast Cancer”. Proceedings 4th International IEEE Conference Intelligent Systems 2008 (IS-2008), 6th-8th Sept., IEEE, London. pp: 11-38 - 11-43.
  25. Liao, R.; Wan, T; Qin, Z. (2010). “Classification of Benign and Malignant Breast Tumors in Ultrasound Images Based on Multiple Sonographic and Textural Features”. Proceedings International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 (IHMSC-2011), 26th-27th Aug., IEEE, Hangzhou. pp: 71-74. doi:10.1109/IHMSC.2011.127
  26. Cheng, H.D.; Chen, C.H.; Freimanis, R.I. (1995). “A Neural Network for Breast Cancer Detection using Fuzzy Entropy Approach”. Proceedings International Conference on Image Processing 1995 (ICIP-1995), 23rd-26th Oct., IEEE, Washington DC. pp: 141-144. doi:10.1109/ICIP.1995.537600
  27. Chunekar, V.N.; Ambulgekar, H.P. (2009). “Approach of Neural Network to Diagnose Breast Cancer on Three Different Data Set,” Proceedings Advances in Recent Technologies in Communication and Computing 2009 (ARTcom-2009), 27th-28th Oct., IEEE, Kottayam. pp: 893-895. doi:10.1109/ARTCom.2009.225
  28. Belciug, S.; Gorunescu, F.; Gorunescu, M.; Salem, A.-B.M. (2010). “Assessing Performances of Unsupervised and Supervised Neural Networks in Breast Cancer Detection”. Proceeding 7th International Conference on Informatics and Systems 2010 (INFOS-2010), 28th-30th March, IEEE, Cairo. pp: 1-8.
  29. Chang, Yuang-Hsiang; Zheng, B.; Wang, Xiao-Hui; Good, W.F. (1999). “Computer-Aided Diagnosis of Breast Cancer using Artificial Neural Networks: Comparison of Back Propagation and Genetic Algorithms”. Proceedings International Joint Conference on Neural Networks 1999 (IJCNN-1999), 10th-16th July, IEEE, Okhlahoma. pp: 3674-3679.
  30. Bevilacqua, V.; Mastronardi, G.; Menolascina, F. (2005). “Hybrid Data Analysis Methods and Artificial Neural Network Design in Breast Cancer Diagnosis: IDEST Experience”. Proceedings International Conference on Intelligent Agents, Web Technologies and Internet Commerce and International Conference on Computational Intelligence for Modeling, Control Automation 2005 (CIMCA-2005), 28th-30th Nov., IEEE, Vienna. pp: 373-378. doi:10.1109/CIMCA.2005.1631497
  31. Land, W.; and Veheggen, E. (2003). “Experiments Using an Evolutionary Programmed Neural Network with Adaptive Boosting for Computer Aided Diagnosis of Breast Cancer”. Proceedings IEEE International Workshop on Soft Computing in Industrial Application, 2003 (SMCia-2003), 23rd-25th June, IEEE, Finland. pp: 167-172. doi:10.1109/SMCIA.2003.1231364
  32. P. MEESAD and G. YEN., “Combined Numerical and Linguistic Knowledge Representation and Its Application to Medical Diagnosis”. IEEE transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 3, No.2, pp: 206-222.
  33. Arulampalam, G; and Bouzerdoum, A. (2001). “Application of Shunting Inhibitory Artificial Neural Networks to Medical Diagnosis”. Proceedings Seventh Australian and New Zealand Intelligent Information Systems Conference 2001, 18th-21st Nov., IEEE, Perth. pp: 89 -94.

  • George, Yasmeen Mourice, et al. "Remote computer-aided breast cancer detection and diagnosis system based on cytological images." Systems Journal, IEEE 8.3 (2014): 949-964.
  • Augusto, Gustavo Barbosa. "Computer Aided Diagnosis for Breast Cancer Detection." (2014).
  • Augusto, Gustavo Barbosa. "Multiple Kernel Learning for Breast Cancer Classification." (2014).
  • George, Yasmeen M., et al. "Breast Fine Needle Tumor Classification using Neural Networks." International Journal of Computer Science Issues(IJCSI) 9.5 (2012).
  • Shaji, B., S. Purushothaman, and R. Rajeswari. "DETECTION OF MICROCALCIFICATION IN BREAST USING RADIAL BASIS FUNCTION." International Journal of Computer Science and Information Security 11.10 (2013): 61.